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Abstract. In the present paper we investigate the behaviour and subsequent modulational
instability or stability of coupled non-linear helicon–acoustic waves in a piezoelectric
semiconductor plasma. We use the Krylov–Bogoluibov–Mitropolski technique of multiple-
scale analysis to arrive at the non-linear Schrödinger equation, which governs the behaviour
of the above-mentioned waves. Physical parameters of InSb are used to investigate numerically
whether the wave is modulationally stable or unstable.

1. Introduction

Since the discovery of helicon wave propagation in semiconductors, the interactions between
it and other modes—acoustic as well as electromagnetic—of the propagating medium have
received considerable attention. There exists a vast literature on helicon waves, including
review articles and monographs on the propagation characteristics, experimental properties
and applications of these waves (see, e.g., Morgan (1967), Kaner and Skobkov (1968),
Maxfield (1969), Baynham and Boardman (1970), Petrashov (1984) and Platzman and Wolff
(1973)). Most of the above-mentioned studies deal with the linear behaviour of these waves.
However, in the past decade or so, non-linear propagation characteristic of helicon and other
electromagnetic modes as well as acoustic modes have become the subject of investigation,
in semiconductors as well as in piezoelectric semiconductors. Piezoelectric semiconductors
are of importance not only because of the applications of such materials in various solid
state and ultrasonic devices, but also because such materials present the opportunity to
investigate the coupling between mechanical and electromagnetic effects.

Non-linear processes in semiconductors and piezoelectric semiconductor plasmas have
been investigated for the past two decades. Progress in this area has received considerable
impetus from corresponding developments in non-linear physics, plasma physics and
computational methods. Pawlik and Rowland (1975) presented a non-linear theory of
the propagation of acoustic waves in a piezoelectric semiconductor plasma, based on an
asymptotic expansion in multiple time and space scales. The envelope of the wave amplitude
is found to satisfy a non-linear Schrödinger (NLS) equation with complex coefficients. The
solution of this equation is obtained using a perturbation technique. This results in a solitary
wave and is used to study the saturation of the instability. It is found that the saturation
mechanism is a local change in the DC electric field and carrier concentration.
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The non-linear effects investigated thus far also include work by Guha and Sen (1979),
who studied the modulational instability of a laser beam via the non-linear interaction of
an external laser beam with a low-frequency transverse acoustic wave in the presence of a
transverse magnetostatic field in a heavily doped piezoelectric semiconductor and showed
that the instability results in the amplification of acoustic waves. Sen (1980) has studied the
phenomenon of stimulated Brillouin scattering in a one-component (electron) homogeneous
piezoelectric semiconductor subject to a large transverse magnetostatic field when the
semiconductor is irradiated with a spatially uniform laser beam. Senet al (1980) have
investigated the phenomenon of Raman instability in an n-type piezoelectric semiconductor
in the presence of a large transverse magnetostatic field. The above-mentioned workers
have shown that a large transverse magnetostatic field reduces the threshold value of the
pump amplitude and increases the growth rate of the unstable Raman mode at an electric
field amplitude greater than the threshold value. Sen and Sen (1982) have reported the
results of the analytical investigation of a stimulated Brillouin instability in a magnetoactive
piezoelectric semiconductor plasma under various geometrical configurations of the electric
field and discussed the possibilities of obtaining maximum growth of the unstable Brillouin
mode in the crystal.

Ghosh and Khan (1986) have studied the excitation of acoustic–helicon waves and
the subsequent parametric amplification of acoustic waves in piezoelectric semiconducting
crystals under the influence of an external magnetic field. Shahet al (1991) have investigated
the non-linear behaviour of coupled helicon–acoustic waves in a piezoelectric semiconductor
plasma via a Korteveg deVries (KdV) type of equation. In later work, Shahet al (1993)
studied the propagation of non-linear helicon waves in a layered structure. The reductive
perturbation method was used to derive the non-linear evolution equation. This equation
has a one-soliton solution and this solution has been derived. More recently Anwaret al
(1995) have considered parametric instability in a piezoelectric semiconductor plasma. In
this work the three interacting waves were an ordinary wave, an extraordinary wave and a
coupled upper hybrid acoustic wave.

In the present work we shall be considering the non-linear propagation of coupled
helicon–acoustic waves in a piezoelectric semiconductor plasma via the solutions of the NLS
equation. We shall use the Krylov–Bogoluibov–Mitropolski (KBM) technique (Kakutani and
Sugimoto 1974) to arrive at the above-mentioned non-linear evolution equation. The linear
dispersion relation is obtained in the lowest order of KBM expansion. In the next order of
the KBM method (section 3) we establish a relationship between the group velocity and the
frame of reference of the coupled helicon–acoustic waves. In section 4 we obtain the NLS
equation and in section 5 we numerically investigate modulational stability–instability and
on this basis discuss the possible types of solution of the NLS equation.

2. Mathematical formulation

We consider an n-type piezoelectric semiconductor plasma in order to investigate the non-
linear behaviour of coupled helicon–acoustic waves. The set of equations necessary for
deriving the NLS equation for the above-mentioned waves for the one-dimensional case is
given below:

∂tn + ∂tnvz = 0 (1)

∂tv± + vz∂zv± = − e

m
E± ∓ ie

m
(vzB± − ωcv±) (2)
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∂tvz + vz∂zvz = − e

m
(vxBy − vyBx) − v2

T

n
∂zn (3)

(ρ∂tt − ce∂zz)u∓ = β∂zE± (4)

∂zE± = ±i∂tB± (5)

∂zzE± = µ0[∂ttD± + ∂tj±] (6)

D± = εE± − β∂zu∓ (7)

j± = −nev±. (8)

Equation (1) is a continuity equation of the electrons; equations (2) and (3) are the
electron equations of motion in the perpendicular and parallel directions, respectively.
Equation (4) is the lattice equation of motion, and equations (5)–(8) are Maxwell’s equations.
Since helicon waves are circularly polarized waves, the fluctuating quantities have all been
expressed in the formφ± = φx ± iφy , where± corresponds to the right and left circularly
polarized waves, respectively. The variablesu, v, n, E andB are the lattice displacement,
the electron velocity, the electron number density, the electric field and the magnetic field,
respectively. The quantitiesµ, ε and ωc are the magnetic susceptibility, the dielectric
constant and the electron cyclotron frequency, respectively.

In order to derive the NLS equation we use the KBM technique (Kakutani and Sugimoto
1974). The parametersn andvz do not contribute to the linear dispersion relation for the
helicon waves; thus the fluctuations in the leading order terms would be of orderε4. Thus
an expansion is made in the following way:

n = n0 + ε4n1

vz = ε4vz1 + · · · .
The other variables are expanded in the following manner:

φ± = εφ±1 + ε3φ±2 . . . . (9)

Here ε is the perturbation parameter. The quantitiesn1, v±1, u∓1, E±1, B±1, . . . , n2, v±2,
u∓2, E±2, B±2, . . . depend onx and t through a and ā (the complex amplitude and its
complex conjugate) andψ (phase factor) which is given byψ = kx − ωt . The complex
amplitudea is a slowly varying function ofx and t of the form

∂ta = εA1(a, ā) + ε2A2(a, ā) + · · ·
∂xa = εB1(a, ā) + ε2B2(a, ā) + · · · . (10)

In the light of equation (10) we may rewrite∂t and∂x as

∂t = −ω∂ψ + ε2(A1∂a + CC) + ε4(A2∂a + CC) + · · ·
∂x = k∂ψ + ε2(B1∂a + CC) + ε4(B2∂a + CC) + · · · . (11)

The unknown functionsA1, B1; A2, B2; . . . are arbitrary at this stage and are determined
later when the solution is made free from secular terms.

The variablesu, vρ , vs , n, E and B have been normalized in the following manner:
u = uωP /vT , vρ = vρ/vT , vs = vs/vT , n = n/n0, E = E/vT B0 andB = B/B0. We further
note here that the wavenumberk and frequencyω are also normalized. This normalization
has been done in the following way:k = kvT /ωP andω = ω/ωP .

We now substitute the expanded quantities and operators in the set of equations (1)–(8)
and collect terms in different orders ofε. From the first order inε we eliminateE±1, u∓1

andB±1 and arrive at the following differential equation inv±1:[
ω∂ψψ ± iωc∂ψ + 1

ζc2

]
v±1 = 0 (12)
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where

ζ = ω

c2
− k2

ω
− αk2vρω

ω2 − k2v2
s

α = µ0βvT /B0.

Assuming a plane-wave solution of the form

v± = a exp(1ψ) + CC (13)

and substituting in equation (12) we get the linear dispersion relation

(ω ± ωc)ζ − 1

c2
= 0. (14)

From equations of orderε we can obtain expressions for the other unknown quantities
and these are given by

E±1 = i

ζωc2
[a exp(iψ) + CC] (15)

u∓1 = kVρ

ζωcc2(ω2 − k2v2
s )

[a exp(iψ) + CC] (16)

B±1 = ∓ k

ζωcc2ω
[a exp(iψ) + CC]. (17)

The group velocity of the coupled helicon–acoustic wave is obtained from equation (14)
and has the following form:

Vg = (2/ζc2){k/ω + αkvρω/(ω2 − k2v2
s ) + αkv3

ρωv2
s /(ω

2 − k2v2
s )

2}
ζ + (1/ζc2){1/c2 + k2/ω2 − αk2vρ/(ω2 − k2v2

s ) + 2αk2ω2vρ/(ω2 − k2v2
s )

2} . (18)

3. Terms of order ε3

In this section we collect third-order terms inε from the initial set of equations (1–8). This
results in a set of equations relating togetheru∓2, E±2, B±2 and cross products between
terms with subscript 1. Using the results of the previous section and eliminatingu∓2, E±2

andB±2, we obtain the following differential equation forv±2:[
ω∂ψψ ± iωc∂ψ + 1

ζc2

]
v±2 = −∂ψf3 + ωc

ζ

[
f4 − k

ω
f1 + αkωf2

ω2 − k2v2
s

]
(19)

where

f1 = − i

ζωcc2

[
k

ω
(A1 + CC) + (B1 + CC)

]
[exp(iψ) + CC]

f2 = 2iωkvρ

ζωcc2(ω2 − k2v2
s )

(A1 + CC)[exp(iψ) + CC]

+ ivρ

ζωcc2
(B1 + CC)

{
1 + 2k2v2

s

ω2 − k2v2
s

}
(exp(iψ) + CC)

f3 = −(A1 + CC)[exp(iψ) + CC]

f4 = ik

ζωcc2

[
1

ω
+ αvρω

ω2 − k2v2
s

]
[exp(iψ) + CC](B1 + CC)

− i

ζωcc2

[
− 1

c2
+ αk2vρ

ω2 − k2v2
s

]
(A1 + CC)[exp(iψ) + CC].
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We see from the above expression that the terms proportional to exp(iψ) and its complex
conjugate are secular terms, which cause a divergence in the solution. Such terms are
removed by putting them equal to zero (Kakutani and Sugimoto 1974). This results in the
following:

A1 + VgB1 = 0. (20)

We note here that

A1 = ∂t1a B1 = ∂x1a. (21)

Equation (20) shows that the amplitude remain constant in a frame of reference moving
with the group velocity of the wave.

Expressions forE±2, u∓2 andB±2 can now be obtained and these are given by

E±2 = 1

ωc

{vgB1 + i(ω ± ωc)C1}[exp(iψ) + CC] + C2(a, ā) (22)

u∓2 = 1

ω2 − k2v2
s

{ −i

ζωcc2

[
1 + 2k2v2

s

ω2 − k2v2
s

− 2kωvg

ω2 − k2v2
s

]
B1 − kvρ

ωc

[ivgB1

−(ω ± ωc)C1]

}
[exp(iψ) + CC] + C3(a, ā) + C4(a, ā) (23)

B±2 = 1

±iω

{ −1

ζωc2ωc

(ω − kvg)B1 − k

ωc

[vgB1 + i(ω ± ωc)C1]

}
×(exp(iψ) + CC) + C5(a, ā). (24)

From terms of orderε4 we obtain an expression relating the parallel velocity fluctuations
to the perpendicular velocity fluctuations. This is given by the following equation:

vz1 = −k

2ζc2(ω2 − k2v2
T )

|v|2 (25)

where

|v|2 = v2
x + v2

y.

4. The non-linear Schr̈odinger equation

In this section we collect the next order terms, i.e. terms of orderε5 from the set of equations
(1)–(8). We generate a differential equation inv±3 using the same argument as used for
the ε3-order case by eliminating all other unknowns. This differential equation has terms
proportional to exp(iψ) on the right-hand side. The terms proportional to exp(iψ) and its
complex conjugate are secular terms; these are set equal to zero in order to remove secularity
in the differential equation. When these secular terms are put equal to zero, the following
expression is obtained:

i(A2 + VgB2) + P(B1∂aB1 + CC) + Q|a2|ā = 0 (26)

whereP andQ are given by

P = −
{{

− 1

ζc2

[
3αk2vρω

(ω2 − k2v2
s )

2
− 4αk2vρω

3

(ω2 − k2v2
s )

3
− k2

ω3

]
+

[
1

c2
+ k2

ω2
− αk2vρ

ω2 − k2v2
s

+ 2αk2vρω
2

(ω2 − k2v2
s )

2

] }
V 2

g

+2

{
1

ζc2

[
αkvρ

ω2 − k2v2
s

− 2αkvρω
2

(ω2 − k2v2
s )

2
+ αk3vρv

2
s

(ω2 − k2v2
s )

2
− k

ω2

−4αk3vρv
2
s ω

2

(ω2 − k2v2
s )

3

]
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−
[

k

ω
+ αkvρω

(ω2 − k2v2
s )

+ αk3vρv
2
s ω

(ω2 − k2v2
s )

2

] }
Vg

+ 1

ζc2

[
1

ω
+ αvρω

ω2 − k2v2
s

+ 5αk2vρv
2
s ω

(ω2 − k2v2
s )

2
+ 4αk4vρv

4
s ω

(ω2 − k2v2
s )

3

] }
/{

ζ + 1

ζc2

[
1

c2
+ k2

ω2
− αk2vρ

ω2 − k2v2
s

+ αk2vρω
2

(ω2 − k2v2
s )

2

] }
Q = − k2

2ζc2(ω2 − k2v2
T )

/ {
ζ + 1

ζc2

[
1

c2
+ k2

ω2
− αk2vρ

ω2 − k2v2
s

+ 2αk2vρω
2

(ω2 − k2v2
s )

2

]}
.

Equation (26) can be rewritten in a standard form by doing a reverse coordinate
transformation (Kakutani and Sugimoto 1974) and we obtain the standard form of the
NLS equation:

i∂τ a + P∂ζζ a + Q|a2|ā = 0. (27)

Figure 1. Plots of group velocityvg against the normalized propagation frequency for
n0 = 1023 m−3 andB0 = 11.3 T.

5. Results and discussion

In the present section we use typical piezoelectric semiconductor plasma parameters and
investigate the modulational stability–instability of the coupled helicon–acoustic waves. It
has been shown (see, e.g., Hasegawa (1975)) that the sign of the ratioP/Q determines
whether the wave described by the NLS equation (27) is modulationally stable or unstable.
We note thatP is the group dispersion parameter andQ is the non-linearity parameter.
If P/Q < 0, then the wave is modulationally unstable and this leads to the formation of
the envelope solitons, in which case equation (27) has known analytical solutions. In the
other case, i.e. whenP/Q > 0, then the wave is modulationally stable and this in turn
implies a solution for the absent region of the wave field and is also known as an envelope
hole (Hasegawa 1975). In this case, equation (27) also has a known analytical solution.
However, the solution in this case has an additional parameter which describes the depth of
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Figure 2. Plots of the group dispersion parameterP versus the normalized propagation frequency
for n0 = 1023 m−3 andB0 = 11.3 T.

the modulation. For a particular value of this additional parameter, we can obtain solutions
which represent the formation of an envelope soliton. We have used the following typical
InSb parameters (Sen and Sen 1985) to investigate the modulational stability–instability
of the coupled helicon–acoustic waves:m = 0.014m0, ε = 15.8, β = 0.054 cm−2,
ρ = 5.8 × 103 kg m−3, vs = 0.795 (normalized byvT ) andvT = 5.03× 103 m s−1.

In figure 1 we have plotted the group velocityvg (given by equation (18)) against
ω for n0 = 1023 m−3 and B0 = 11.3 T. We see that for lower values ofk the group
velocity is higher than for larger values ofk, but in generalvg increases with increasing
propagation frequencyω. In figures 2 and 3 we have plottedP andQ, respectively, against
ω. Both P and Q vary in a complicated fashion with respect toω. In figures 4–6 we
have obtained graphs forP/Q against the normalized propagation frequency for different
values of the normalized wavenumberk. We have taken a fixed value of magnetic field
(in our caseB0 = 11.3 T). Figures 4–6 correspond to different values of the background
electron number density (see figure captions). We see from figures 4–6 that, for lower
values of the wavenumber,P/Q tends to have positive values in general. However, for
lower values ofω, P/Q has negative values but becomes positive asω increases. This
implies that there are regions where the non-linear wave is modulationally unstable and
regions where it is modulationally stable, i.e. for the same wavenumber there will be a
region where there are envelope soliton solutions and regions where soliton hole solutions
exist. Soliton hole solutions are characterized by an additional parameter which is known as
the modulational parameter, and this defines the depth of the modulation. If this additional
modulation parameter is equal to unity, then shock wave solutions are obtained (Hasegawa
1975). We further note that, as the number density increases, the regions where the soliton
solutions exist become larger. We have also checked that by changing the value of the
background magnetic field there is no significant change in the trend of the graphs. We note
here that in all the figures, i.e. figures 1–6, the values ofk have been stated in dimensional
terms although while obtaining these graphs the dimensionless values of the wavenumber
has been used(k = kvT /ωP ).
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Figure 3. Plots of the non-linearity parameterQ versus the normalized propagation frequency
ω for n0 = 1023 m−3 andB0 = 11.3 T.

Figure 4. Plots of the modulational stability–instability parameterP/Q versus the normalized
frequencyω for three different values of the wavenumberk, for n0 = 1022 m−3 andB0 = 11.3 T.

Thus our numerical analysis shows that coupled helicon–acoustic waves exhibit a
complicated behaviour and the type of semiconductor used would have its own regions
of envelope soliton propagation and regions of soliton hole propagation. In previous
work in this direction by Pawlik and Rowland (1975) and Abdullahet al (1988) the NLS
equation was derived for acoustic waves in a piezoelectric semiconductor plasma. Pawlik
and Rowland (1975) used a multiple-scale analysis in order to derive the NLS equation
for the ‘White’ equations; however, no numerical analysis was carried out to discuss the
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Figure 5. Plots of the modulational stability–instability parameterP/Q versus the normalized
frequencyω for three different values of the wavenumberk, for n0 = 1023 m−3 andB0 = 11.3 T.

Figure 6. Plots of the modulational stability–instability parameter versus the normalized
frequencyω for three different values of the wavenumberk, for n0 = 1024 m−3 andB0 = 11.3 T.

modulational instability of the acoustic waves. Abdullahet al (1988) used the KBM method
to derive the NLS equation for acoustic waves coupled to electron plasma waves, but
again a modulational stability analysis was not carried out. Thus in the present work in
comparison with the above-mentioned papers we have considered coupled helicon–acoustic
waves and have derived the NLS equation; our numerical analysis shows that regions of
modulational stability and instability exist which correspond to envelope soliton and soliton
hole solutions, respectively. We have used physically relevant parameters which can be of
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use to experimental situations.
Finally we note that we have not included collisions in our initial set of equations. If

collisions had been included, then a background DC electric field would also have been
necessarily included. This would have led to the appearance of a linear interaction term in
equation (27). This term can be removed by a change in variables and the NLS equation
would again have assumed the form of equation (27). This would have complicated
the algebra but not necessarily have given us qualitatively different results. Thus in the
interests of keeping the problem mathematically more tractable we considered a collisionless
piezoelectric semiconductor plasma.
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